Abstract Commensurators of Profinite Groups
نویسنده
چکیده
In this paper we initiate a systematic study of the abstract commensurators of profinite groups. The abstract commensurator of a profinite group G is a group Comm(G) which depends only on the commensurability class of G. We study various properties of Comm(G); in particular, we find two natural ways to turn it into a topological group. We also use Comm(G) to study topological groups which contain G as an open subgroup (all such groups are totally disconnected and locally compact). For instance, we construct a topologically simple group which contains the pro-2 completion of the Grigorchuk group as an open subgroup. On the other hand, we show that some profinite groups cannot be embedded as open subgroups of compactly generated topologically simple groups. Several celebrated rigidity theorems, like Pink’s analogue of Mostow’s strong rigidity theorem for simple algebraic groups defined over local fields and the Neukirch-Uchida theorem, can be reformulated as structure theorems for the commensurators of certain profinite groups.
منابع مشابه
Commensurations and Metric Properties of Houghton’s Groups
We describe the automorphism groups and the abstract commensurators of Houghton’s groups. Then we give sharp estimates for the word metric of these groups and deduce that the commensurators embed into the corresponding quasi-isometry groups. As a further consequence, we obtain that the Houghton group on two rays is at least quadratically distorted in those with three or more rays.
متن کاملSemi-graphs of Anabelioids
In this paper, we discuss various “general nonsense” aspects of the geometry of semi-graphs of profinite groups [cf. [Mzk3], Appendix], by applying the language of anabelioids introduced in [Mzk16]. After proving certain basic properties concerning various commensurators associated to a semi-graph of anabelioids, we show that the geometry of a semi-graph of anabelioids may be recovered from the...
متن کاملAbstract Commensurators of Braid Groups
Let Bn be the braid group on n ≥ 4 strands. We show that the abstract commensurator of Bn is isomorphic to Mod(S)⋉ (Q ⋉ Q), where Mod(S) is the extended mapping class group of the sphere with n + 1 punctures.
متن کاملELEMENTARY EQUIVALENCE OF PROFINITE GROUPS by
There are many examples of non-isomorphic pairs of finitely generated abstract groups that are elementarily equivalent. We show that the situation in the category of profinite groups is different: If two finitely generated profinite groups are elementarily equivalent (as abstract groups), then they are isomorphic. The proof applies a result of Nikolov and Segal which in turn relies on the class...
متن کاملCohomology of Profinite Groups
The aim of this thesis is to study profinite groups of type FPn. These are groups G which admit a projective resolution P of Ẑ as a ẐJGK-module such that P0, . . . , Pn are finitely generated, so this property can be studied using the tools of profinite group cohomology. In studying profinite groups it is often useful to consider their cohomology groups with profinite coefficients, but pre-exis...
متن کامل